
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-01-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing the burden to Department of Defense. Washington Headquarters Services Directorate for Information Operations and Reports 
(0704-0188). 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be 
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.      
1. REPORT DATE (DD-MM-YYYY) 

15-11-2008 
2. REPORT TYPE 

REPRINT 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 

On the anticritical temperature for spacecraft charging 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

62601F 

6. AUTHORS 
Shu T. Lai and Maurice Tautz* 

5d. PROJECT NUMBER 

5021 
5e. TASK NUMBER 

RS 

5f. WORK UNIT NUMBER 

Al 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory RVBXT 
29 Randolph Road 
Hanscom AFB, MA 01731-3010 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFRL-RV-HA-TR-2008-l 142 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 
AFRL/RVBXT 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for Public Release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 
Reprinted from Journal of Geophysical Research. Vol. 113, Al 1211, doi: 10.1029/2008 JA013161. 2008 © 2008 American Geophysical Union. 
*AER/Radex, Inc., Lexington, MA 

14. ABSTRACT     In recent years, evidence has been found for the existence of a critical temperature for the onset if spacecraft charging to 

high voltages. High-voltage charging affects scientific instruments on board and is related to spacecraft anomalies. However, less attention has 
been given to low-voltage charging, which can also affect scientific experiments on board and is relevant to surface chemistry. There also can 
exist an anticritical temperature for low-voltage spacecraft surface charging. Ambient electrons at very low tremperatures tend to cause negative 
surface charging, albeit at low voltages, and as the electron temperature increases, the charging ceases at a critical value depending on the surface 
material. We present the theory and numerical results of anticritical temperatures for typical surface materials in Maxwellian space plasmas. The 
change in anticritical temperature due to a low-incident-energy enhancement of the electron backscatter yield, consistent with recent measure- 
ments, is discussed. Approximate expressions for the anticritical temperature upper limits are given on the basis of Taylor expansions at low 
temperature of the charging onset equation. It is shown that the existence of the anticritical temperature slightly modifies the possible triple-root 
configurations in the flux-voltage characteristic curve for a material. The surface charging effect of a Maxwellian plasma with flux components 
spanning the anticritical and critical temperatures is considered. A comparison with an empirical low-voltage charging curve is given. 

15. SUBJECT TERMS 

Spacecraft charging 
Secondary electrons 

Critical temperature 
Geosynchronous satellite 

Anticritical temperature Space plasmas 

16. SECURITY CLASSIFICATION OF: 
a. REPORT 

UNCL 

b. ABSTRACT 

UNCL 

c. THIS PAGE 

UNCL 

17. LIMITATION OF 
ABSTRACT 

Unl 

18. NUMBER 
OF 
PAGES 

15 

19a. NAME OF RESPONSIBLE PERSON 
 Shu T   I ,ai In recent years  evidence has hern 

19B. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev 8/98) 
Prescnbed by ANSI Std Z39 18 



> a 

<o 

Click 
Her* 

Full 
Article 

AFRL-RV-HA-TR-2008-1142 
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, AH211, doi:10.1029/2008JA013161, 2008 

On the anticritical temperature for spacecraft charging 

Shu T. Lai' and Maurice Tautz2,3 

Received 11 March 2008; revised 5 June 2008; accepted 18 August 2008; published 15 November 2008. 

[i]   In recent years, evidence has been found for the existence of a critical temperature 
for the onset of spacecraft charging to high voltages. High-voltage charging affects 
scientific instruments on board and is related to spacecraft anomalies. However, less 
attention has been given to low-voltage charging which can also affect scientific 
experiments on board and is relevant to surface chemistry. There also can exist an 
anticritical temperature for low-voltage spacecraft surface charging. Ambient electrons at 
very low temperatures tend to cause negative surface charging, albeit at low voltages, 

wv      and as the electron temperature increases, the charging ceases at a critical value depending 
CD      on the surface material. We present the theory and numerical results of anticritical 

temperatures for typical surface materials in Maxwellian space plasmas. The change in 
anticritical temperature due to a low-incident-energy enhancement of the electron 

r—        backscatter yield, consistent with recent measurements, is discussed. Approximate 
O expressions for the anticritical temperature upper limits are given on the basis of Taylor 

expansions at low temperature of the charging onset equation. It is shown that that the 
existence of the anticritical temperature slightly modifies the possible triple-root 
configurations in the flux-voltage characteristic curve for a material. The surface charging 
effect of a Maxwellian plasma with flux components spanning the anticritical and 
critical temperatures is considered. A comparison with an empirical low-voltage charging 
curve is given. 

Citation:   Lai, S. T., and M. Tautz (2008), On the anticritical temperature for spacecraft charging, J. Geophys. Res.. 113. Al 1211, 
doi: 10.1029/2008J A013161. 

1.    Introduction property that surface charging to negative voltages occurs 
, ,   , ..        .     .        _ r below TA but is suppressed above it. Because this effect is 
[2    In recent years, evidence has been found in support of .. ...   ..   .   /..•       -.-   .. ,. ,, T .. 1 . .   , J _    .     , .        , /-     , the opposite to that of the critical temperature, we call/J the 

a critical temperature T* of ambient electrons tor the onset        ,.   ...   , , _       .       .        ..       S     , , ...     ., 
„    ,       . , . .    .       _, anticritical temperature. In sections 2 and 3, we outline the 

of spacecraft charging at geosynchronous altitudes. The ., f..       ...   i     J     . •-.-   i . ..        A ,.K. iiiui     i r theory of the critical and anticritical temperatures. Approx- 
cntical temperature is the threshold level for negative .    .      ,    . ..        etU      .•-.•!. „ • •   -. .      •      ,       ,     , , , imate calculations of the anticritical temperature upper limits 
voltage charging, based solely on electron currents, assum- ...        ..     . ,        ..     c ...    .7     , 

v.        ii-      J-    i    •       r •   -A • L are presented in section 4. In section 5 we outline the physics 
ing a Maxwelban distribution of incident electrons, with e. • ,        , .  .. . .        .•       ,      , -,        J~ / ., 6 . ,,    , •      • of tnple root formation and in sections 6 and 7 we study the 
accompanying secondary and backscatter interactions in the ,. e.- . . ,        ••••   • a ...r   •7.e' • i   -r-i problem of triple-root jumps and equilibrium spacecraft 
satellite surface material. The net current, integrated over        .    .. ,   •       f   ,,       , _• ,   „.        „•       , 

r \-    w        n- potentials in a double and triple Maxwellian plasma, assum- 
energy, depends on the temperature of the Maxwellian r     ,     ,    , , _     .r  . r. . ..    *~'.   r _.     ,     ,   ,.     r ,       , ing that both T4 and T* exist for a given surface material, 
distribution. The threshold temperature occurs when there c   .•    0   • •• e..     ,      -      &•   .   c   . • , 
...              ,       •          , Section 8 gives a discussion of the charging effect of a tnple- 

IS a balance between the primary e ectron currents entering ..        .,- , ... 
,             • i      .  .             j     /   i              i   _ Maxwellian space plasma, having temperature components 

the material and the secondaivbackscatter electrons escap-                    .,        .-•.-,      .     -.-   , . -.. .            _,,        .   .         •'. .          ...        , ,,   17 spanning the anticritical and critical temperatures, with 
ing from it. The solution to this condition yields T* the „ ,     °      .,    ,          ,.                    a   , , 

?.   .                    c                   -             „•'.      .     rr   . emphasis on the low-voltage spacecraft charging region. In 
critical temperature for the onset of spacecraft charging [Lai         r                      condition 
et al., 1982, 1983; Laframboise el al., 1982; Laframboise SeCt'°n 9 We glVe a conclus,on- 
and Kamitsuma, 1983; Lai, 1991a, 1991b; Lai and Delia- 
Rose, 2001; Lai and Tautz, 2006]. 2.    Existence of the Critical Temperature 

[3]   For many materials, because of the shape of the       w  We first 0UtHne ^ concept 0f critical temperature. The 
secondary and backscatter emission curves, there is a second ambient electron current often exceeds that of ambient ions by 
solution at a lower-temperature TA. The solution, T4, has the nearly 2 orders of magnitude [Reagan et al, 1983] because of the 

mass difference and thus the ion contribution can be neglected. 
'Space Vehicles Directorate. Air Force Research Laboratory, Hanscom      The onset of spacecraft charging at equilibrium is determined by 

Air Force Base, Hanscom, Massachusetts, USA. the balance of incoming and Outgoing electron fluxes 
"AER/Radcx Inc., Lexington. Massachusetts. USA. 
Retired. 

Copyright 2008 by the American Geophysical Union. 
0148-0227/08/2008JAO13161 $09.00 

j d\v„F(v) = Jd3vv„[6(E) + n(E)\F(v), (la) 
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where F(v) is the ambient electron velocity distribution, v„ 
is the normal component of the electron velocity, and both 
sides are actually definite integrals. One can write v„ = 
vcos9 in spherical coordinates (v, 9, 4>), where 9 is from 0 to 
7r/2 and <j> from 0 to 2n. Writing the integrals explicitly, 
equation (la) is of the form 

/    dvv2 /      d0sin9        d<pv„F(v) 
Jo Jo ./o 

/"X /"T/2 /*27r 

= /    dvv2        d0sin9       d<pv„[6(E) + n(E)]F(v).   (lb) 
Jo ./o ./o 

In equation (la), the secondary and backscattered electron 
yields, 6(E) and r](E) respectively, are measured in the 
laboratory as functions of electron energy, E, where E = 
(\l2)mv2. 

[5] To solve equation (la) for a given surface material, 
one needs to input the functions 6(E) and r](E). It is 
convenient to use the fitted 6(E) function obtained by 
Sanders and Inouye [1978] 

6(E) = c[e\p(-E/a) - exp(-E/b)]. (2) 

where a = 4.3 £max, b = 0.367£max, and c = 1.37 <5max. 
[6]   For the backscattered electron yield r](E), Prokopenko 

and Laframboise [ 1980] gave the fitted function 

ri(E)=A-Bexp(-CE). (3) 

where the parameters £max, 6mix, A, B, and C depend on the 
surface material. 

[7] Converting to spherical coordinates (E, 9, <p), one can 
integrate equation (la) over the energy and the two angular 
variables. For normal incidence, the angles on both sides of 
the equation cancel out. After some algebra, one obtains the 
following equation: 

r dEEf(E) = /" dEE[6(E) + irf*)]f(E), (4) 
J{) Jo 

where /(£"), obtained from F(v) is the electron distribution 
with the velocity expressed in terms of energy. For 
Maxwellian distribution, J\E) is given by 

/(£) = (n/2mkTY'exp{-E/kT) (5) 

where n is the electron density, m the electron mass, T the 
electron temperature, and k the Boltzmann constant. 
(Strictly speaking, equation (5) is not an energy distribution. 
There is an energy distribution, which is differently defined 
[see, e.g., Mayer and Mayer, 1963], but we will not need to 
use it here.) Since the plasma density n is multiplicative, it 
cancels on both sides of equation (4). Therefore, the 
threshold condition is independent of the electron density n 
and depends on the temperature T only. The condition (4) 
can be written in the equivalent form 

^ dEE[6(E) + n(E)\f(E) 
tfdEEf(E) 

(6a) 

In shorthand notations, equation (6a) can be written as 

(6 + rj) = 1, (6b) 

where the notations, ( and ), denote averaging in the sense 
of equation (6a). 

[8] Substituting equations (2) and (3) into equation (4), 
with the distribution function j\E) given by equation (5) and 
integrating over E, one obtains a sixth-order algebraic 
equation for AT, corresponding to equation (4) 

c[(l + tT/a)~2-(l +kT/b)~2] +A -B(C kT+ \y2= 1.  (7) 

A solution of equation (7) can be used to specify the critical 
temperature 7* [Lai et al., 1982] for the onset of spacecraft charging. 

[9] For electrons coming in at various angles, one needs 
to use angle-dependent 6 and 7/ functions. Angle-dependent 
6 and r/ functions have been given by Darlington and 
Coslett [1972] and Prokopenko and Laframboise [1980], 
respectively. The algebra becomes more complicated but the 
physics remains unchanged. Further details on the critical 
temperature are given by, for example, Lai and Delia-Rose 
[2001] and Lai and Tautz [2006] and will not be repeated 
here. For comparison purposes, we include Table 1 listing 
the critical temperature T* calculated for several typical 
surface materials, based on material properties given by 
Laframboise and Kamitsama [1983]. One can see that kT* 
is typically in the few keV range. 

[10] There are recent advances in secondary electron yield 
formulae derived by using laboratory measurements [e.g., 
Katz et al, 1986; Cazaux, 2001, 2006; Lin and Joy, 2005; 
J. R. Dennison, Physics Department, Utah State University, 
manuscript in preparation]. We are doing a comparative 
study to assess the effects of the various formulae on the 
critical temperature. Whenever an improved formula of 6(E) 
or rf(E) becomes available, one can substitute it in equation 
(4) for updating the numerical value of the critical temper- 
ature and the anticritical temperature. 

3.    Existence of the Anticritical Temperature 

[11] Figure 1 shows the yields for the sample material 
gold as a function of incident energy in the energy range 0 < 
E < 5 (keV). The lower curve gives the backscatter yield, 

Table 1.  Critical Temperature V" 

Material Isotropic Normal 

Mg 0.4 
Al 0.6 
Kapton 0.S 
Al Oxide 2.0 
Teflon 2.1 
Cu-Bc 2.1 
Glass 2.2 
Si02 2.6 
Silver 2.7 
Mg Oxide 3.6 
Indium Oxide 3.6 
Gold 4.') 
Cu-Be (Activated) 5.3 
M8F2 10.9 

"Units in keV for kT*. 

0.5 
1.2 
14 
I 4 
14 

1.7 
1.2 
2.5 
2.5 
2.9 
3.7 
7.8 
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Figure 1.   Yield versus energy for gold. 

the middle curve the secondary emission and the top curve 
the summed yield, HE) + rj(E). It can be seen that at high 
energies, the total yield goes below unity, giving a negative 
current contribution, and the integration over energies can 
produce current balance (see equation (4)) at the critical 
value T*. It is apparent from Figure 1 that the "average" 
yield (6 + rf) integrated over energy (equation (3)) can also 
go below unity at low energies and that there could be a 
second solution. We shall call the unity crossing point ((6 + 
rj) = 1) at low temperature TA, the anticritical temperature. 
The existence and value of TA depend critically on the low- 
energy behavior of the yield curves. 

[12] Table 2 lists the numerically calculated values of 
anticritical temperature TA for some typical surface materi- 
als, based on the parameter coefficients of Sanders and 
Inouye [1978] and Prokopenko and Laframboise [1980]. It 
is observed that the kTA values are mostly below 20 eV for 

normal incidence and below 10 eV or nearly zero for 
isotropic incidence. Such low values of anticritical temper- 
ature are easily overlooked. From Table 2, we see that the 
6(E) coefficient of some materials, such as gold and silver, 
has two properties: (1) high values of £max and (2) near 
unity value of <*>max. These two properties give higher values 
of TA. The maximum value found is 288 eV for silver at 
normal incidence. 

[13] Since the secondary and backscattered electron emis- 
sion coefficients 6(E) and i](E) are obtained by fitting data 
obtained in the laboratory, the signal-to-noise ratio often 
decreases as the energy E approaches zero, rendering 
inaccuracies to the fitted data in the low-energy range. 
Therefore, the coefficients 6(E) and ij(E) should not be 
regarded as highly accurate for small E. In Table 2, anti- 
critical temperatures kTA below 1 eV are flagged and no 
value is given. It is also possible that the secondary and 
backscatter emissions are so small that (6(E) + i](E)} is less 
than one at all energies. In that case, there would not be a 
solution for either the critical or anticritical temperature (see 
materials Mg and Al in the Tables 1 and 2, respectively) and 
the material should always charge. 

[14] The existence of the anticritical temperature TA stems 
from the properties of the secondary electron emission 
coefficient 6(E) and backscatter coefficient i)(E). The inci- 
dent electrons must have enough energy to generate a 
secondary electron. At sufficiently low-energy E of the 
incoming electrons, not many exited electrons are created 
in the material. The result is that the number of incoming 
(primary) electrons exceeds that of the outgoing secondary 
electrons and the secondary emission yield goes to zero as E 
approaches zero. This is not necessarily true for the back- 
scattered electrons. In Figure 1, the backscatter yield goes to 
a small positive value, which is set by a fit to extrapolated 
measured data [Prokopenko and Laframboise, 1980]. In 
terms of the backscatter parameters, the yield at E = 0 is A 
B, which for gold is 0.124. However, there are experimental 
indications that low-energy backscattered particles have a 
reflection coefficient of one [Cimino et al., 2004] as E goes 
to zero. This result can also be derived using a quantum 
mechanics model considering a plane wave electron inci- 

Tablc 2.  Anticritical Temperature TA for Typical Surface Materials" 

Material A A B C Isotropic Normalb 

Mg 0.25 0.92 0.1460 0.0250 0.3440     
Al 0.30 0.97 0.1568 0.0303 0.3431 — — 
Kapton 0.15 2.10 0.0700 0.0000 0.0000 e 0.014 
AUO, 0.30 2.60 0.1238 0.0172 0.3455 e 0.020 
Teflon 0.30 3.00 0.0900 0.0000 0.0000 e 0.017 
Cu-Bc 0.30 2.20 0.3136 0.0692 0.6207 e 0.020 
Glass 0.35 2.35 0.2000 0.0420 0.4100 £ 0.015 
SiO, 0.42 2.50 0.1238 0.0172 0.3435 0.024 0.029 
Silver 0.80 1.00 0.3900 0.2890 0.6320 0.184 0.288 
Magnesium Oxide 0.40 4.00 0.1238 0.0172 0.3435 e 0.016 
Indium Oxide 0.80 1.80 0.2750 0.0250 0.5400 0.077 0.108 
SCATHA Boomat 0.59 1.86 0.4380 0.3250 0.6130 0.041 0.059 
Gold 0.80 1.45 0.4802 0.3566 0.6103 0.096 0.114 
Cu-Bc (Activated) 0.40 5.00 0.3136 0.0692 0.6207 E 0.010 
Mgr": 0.85 6.38 0.1238 0.0172 0.3435 £ 0.019 

•"Anticritical temperature 7"., given in kcV. 
bHerc — means that there is no TA, and £ indicates that TA is below 1 eV. 

3 of 15 



A11211 LAI AND TAUTZ: ANTICRITICAL TEMPERATURE A11211 

11 
V 

 r •>l| 

0 

> • 

'     1 

'8 

1        1        1        1 
0.0 0.1 0.2 0.3 

ELECTRON TEMPERATURE /tT(keV) 

Figure 2a. Current balance equation (6 + r/) = l for the 
anticritical temperature TA with and without enhanced 
backscatter for the surface material gold. We have used 
Ea = 0.05 keV for the enhancement fall-off parameter. 

dent on a negative potential step [see, e.g., Bransden and 
Joachain, 1989]. 

[15] We have calculated the yields for gold in the low- 
energy range 0 < E < 0.3 (keV), with an added low-energy 
backscatter enhancement. The material properties are the 
same as in Figure 1, except for the additional term 

A/; = (1 -A + B) exp 
E_ 

E0 
IS) 

where parameter En specifies the enhancement fall-off rate. 
With this change, rj(E) + Aij(E) —> 1 as E —> 0 and the same 
asymptotic backscatter yield is obtained at large E. Experi- 
mental data indicates that £0 is about 0.05 1.5 keV for gold 
[Jablonski et al., 1989; Jablonski and Jiricek, 1996] and 
0.05 keV has been used. The effect of the added term is to 
produce a minimum in the summed yield curve. If this 
minimum is less than 1.0, an anticritical temperature TA exists. 

[16] We show in Figure 2a the energy averaged coeffi- 
cient a = (6 + 7/ + Aij) for gold as a function of kT (keV), 
with (solid line) and without (dashed line) the additional 
backscatter enhancement term, (AT/) 

<Ai7) = (l-^+fl)/(l+*r/Eo)2 (9) 

For reference, the primary curve corresponding to the no 
backscatter case is shown as a dash line. The anticritical 
temperature is determined by the intersection of the curves 
with the horizontal "negative-to-positive" transition line at 
a = 1.0. With the added term TA was determined numerically 
to be 0.0915, which can be compared with 0.1143 for the 
unmodified case. The TA value is shifted to lower kT, 
because the a curve is elevated by the backscatter so that the 
intersection with the horizontal test line occurs earlier. The 
values of anticritical temperature given in Table 2 thus 
represent upper limits. 

[17] Near the critical temperature, there would also be a 
shift, in this case to higher kT, though it would be small 
since Ai^E) falls off rapidly with E. For the case of gold, 
we obtain 2.913 for the shifted critical temperature and 
2.911 for the unmodified case. 

[is] For some materials, the backscatter enhancement 
could be strong enough so that there is no zero crossing 
in the net averaged flux, (1 - 6 - if), curve and no 
anticritical temperature would occur. We do not calculate 
a table of modified anticritical temperatures because the 
parameter E0 is not generally known experimentally. As 
indicated in Figure 2b, when En goes to zero, we recover the 
unmodified anticritical temperature. As E{) increases, the 
anticritical temperature decreases until at some point (here 
E0 ~ 0.13) it disappears. This type of behavior would occur 
with other materials and the magnitude of the temperature 
shift e would depend on the specific material parameters. 
The shift can be estimated from the current balance equa- 
tion, if we expand about AT of the no enhancement case. For 
example, we get for gold 

ATA = -An/(da/dkT) ~ -0.081/3.4 = -0.024. (10) 

which agrees approximately with the anticritical tempera- 
ture difference (-0.023) found numerically. At high kT, in 
the critical temperature region, the derivative daldkT 
changes sign and the enhancement term is small, leading 
to a slight positive shift. 

[19] There are other backscattering formulae and meas- 
urements published in the literature. They can slightly affect 
the numerical results. Recently, Cimino et al. [2004] mea- 
sured the backscattering of gold and found deviation at near 
zero energy. In view of this uncertainty, we have done a 
study using the backscattering coefficient for gold as a 
parameter going over the expected range from 0.124 to 1 
at near zero energy. Since no measurement of other materi- 
als is available at near zero energy at this time, we did not 
pursue this aspect. The backscattering equation does not 
change the concept of our paper. At this time, Cimino's 

0.14 

0.10- 

> 

0.06 

0.05 0.1 

E0 (keV) 

0.15 

Figure 2b.    Anticritical temperature TA versus the back- 
scatter parameter Elh with gold as the surface material. 
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Table 3.  Anticritical Temperature and Three Successive Approximations" 

Material kT* kTf, ± % *r, ± % kT2 ± % A7\ ± % 

Cu-Bc (activated) 0.0099 0.0117 +18.7 0.0101 +2.35 -0.0099 +0.04 0.0099 +0.09 
Kapton 0.0141 0.0105  -25.6 0.0150 +01 0.0140 -0.20 0.0141 +0.64 
Mg Oxide 0.0154 0.0146 -4.8 0.0159+3.50 0.0154 +0.04 0.0154 +0.16 
Teflon 0.0168 0.0146 -12.7 0.0176 +4.82 0.0168 -0.01 0.0168 +0.27 
MgF, 0.0192 0.0195 +1.6 0.0196+2.16 0.0192 -0.05 0.0192 +0.08 
Al20, 0.0197 0.0169    14.3 0.0208 +5.48 0.0197 -0.02 0.0198 +0.35 
Cu-Bc 0.0197 0.0200+1.6 0.0207 +5.53 0.0196 -0.02 0.0197 +0.34 
Glass 0.0243 0.0218 -10.2 0.0257 +5.74 0.0243 -0.03 0.0244 +0.39 
SiO, 0.0291 0.0246    15.4 0.0307 +5.72 0.0291    0.03 0.0292 +0.39 
SCATHA Boomat 0.0595 0.0465    21.9 0.0646 +8.58 0.0593  -0.27 0.0598 +0.49 
Indium Oxide 0.1082 0.0837 -22.6 0.1177 +8.85 0.1074 -0.73 0.1094 +1.12 
Gold 0.1143 0.0808 -29.3 0.1281 +12.10 0.1132    0.96 0.1146 +0.31 
Silver 0.2873 0.1172 -59.2 0.3237 +12.66 0.2615     8.99 0.2910 +1.29 

"Units of the temperatures (multiplied by k) arc expressed in kcV Here % is the percent difference from TA, T4 is the numerical solution with all terms, Ta ± % is 
the analytical solution neglecting the ion term. Tt +. % is the solution to first order. T2 ± % is the solution to second order, and 7", ± % is the solution to third order. 

measurement is the only one available at near zero energy. 
One can update the numerical values when measurements 
for more materials are available. 

4.    Approximate Formula for Anticritical 
Temperature 

[20] A simple approximate formula of TA in Table 2 is 
handy for practical purposes. To seek an approximation, we 
neglect the electron backscattering contribution compared 
with that of secondary emission. With this change, the 
current balance equation, equation (7), becomes 

c[(l +kT/a) 2 - (1 +kT/b)~2] = I. (11) 

By making a Taylor expansion in AT, and keeping only the 
lowest terms, we get the approximate solution A7"0 

kT, w kT0 = 

or in terms of Em.dx and t>„ 

ab 
2c (a - b) 

kT0 = 0.147 - 

(12a) 

(12b) 

This simple formula is valid at small kT and with no 
backscatter component. 

[21] The ATn results obtained from equation (12b) are 
given in Table 3 for a list of available surface materials (see 
Table 2 for the properties). In Table 3, the first column 
specifies the material. The next column, labeled kTA, is the 
numerical result. The next two columns show AT0 and its 
percent error. It can be seen that, at low anticritical temper- 
atures (AT < 0.1 keV) the estimate is accurate to about 20%. 
But at higher temperatures (kT > 0.1 keV), the estimate is 
considerably worse (silver is ~-60%). The main reason for 
this poor kT0 behavior can be traced to the kTIb term. Since b 
itself is typically quite small, the approximation of neglecting 
the higher-order terms progressively fails as AT increases. 

[22] We can obtain a better estimate of kT if we develop a 
hybrid expansion of equation (7). By this we mean that the 
terms kTIa and CAT are expanded and the first-order terms 

retained, but all powers of the kTIb term are kept. This 
procedure leads to the cubic equation shown below 

1 + **§-»)+<*#§ 
4fj 
b 

(*n3^f=o, (i3) 

where we have defined o = 1 + (A B 1 )/c and 0m \la 
BCIc. This equation can be solved to successive orders by 
keeping the two lowest-order terms, the first three terms or all 
four terms. The solutions are denoted by AT, AT2, and AT, 
and the results, along with the percent errors, are shown in 
Table 3. It is evident that the linear estimate kT\ is good to 
about the 10% level and tends to give high values. The 
quadratic result AT is accurate to about 1%. but it too has 
10% errors in the higher-AT range. In order to get the errors 
down to approximately the 1 % level throughout, one needs to 
solve the cubic equation for kTy However, if one requires just 
a practical "ballpark" estimate of the anticritical temperature 
the linear result suffices and it is explicitly 

kT, 
6(1 AT0(1 -A + B) 

2{a -bd)      I + 2AT„[BC - (1 - A + B)/b\' 
(14) 

This formula contains AT,, and the extra terms lead to better 
accuracy than equation (12b). It differs from the pure AT0 

estimate in that backscatter coefficients A, B, C are used and 
kTIb has been treated more fully. If En is known one can 
further estimate the effect of backscatter enhancement by 
employing the shift equation (10). 

5.    Triple-Root Situation With Two Maxwellian 
Components 

[23] Consider a plasma electron population which is a 
superposition of two Maxwellian distributions with temper- 
atures T, and 7\. A necessary condition [Lai, 1991a] for a 
triple-root situation to occur is 

T, <T* < T2 (15) 

where T* is the critical temperature. Before we introduce a 
new degree of complication, the anticritical temperature T4, 
into the inequality equation (15), let us first review the 
underlying idea. 
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[24] Consider a double Maxwellian distribution f{E) 
where we have expressed the velocity in terms of the energy 
E. The electron distributions are 

/(£)=/,(£) +fj(E). (16) 

/,(£•) = nt{m/2vkTr.j)
i,2aip(-E/kTe.l), (17) 

f2(E) = n2(m/2*kTez)mcKp(-E/kTea), (18) 

where TeA and Te2 denote the first and the second 
Maxwellian electron temperatures respectively. Three 
analogous equations can be written for double Maxwellian 
ions, with the subscript e replaced by /. The temperature in a 
Maxwellian distribution is defined as the inverse of the 
slope of the graph of \ogJ{E) as a function of E. We assume 
that Te 1 < Te2 and TiA < Tl2. For simplicity, we assume 
charge neutrality, n — ne = nt. (In the discussion below, 
variable densities are indirectly accounted for by the varying 
fluxes.) We temporarily neglect the ions for low potential 
magnitude. If both temperatures T,,t and Te2 are below 7*, 
the net flux, integrated over energy and including secondary 
and backscatter contributions, would be positive. The 
surface would charge to a positive potential and there is 
no competition. Likewise, if both 7"(,, and Te2 are above 7*, 
the surface would charge to a negative potential and there is 
again no competition. Therefore, it is necessary to satisfy 
the inequality (15) for the two distributions to compete with each 
other. Such competition can produce a triple root situation. 

[25] Let us now write down the full expressions of the 
fluxes collected by a spacecraft at a negative voltage <j>. The 
total flux JT is given by 

where 

Mo) =J,(0) +y2(</>). (19) 

where each term is the sum of the separate contributions 
from the electrons and ions 

M<t>) = Je.\{(t>) + Ji.\(<t>) 

J2(<t>) =JeJ<P)+Ju(<t>)- 

We have explicitly the terms 

JM) = -jej (0)[1 - (6 + •})] expf - ^-\ 

(20a) 

(20b) 

(21) 

(* + »;> = 
;u

x dEEf„(E)[6(E) + >/(£)] 

fcdEEME) 
1,2), (23) 

qe = —e, and </, = +e. 
[26] In equations (21) and (22),je„{0) andy',,„(0) are the 

ambient electron and ion fluxes, S(E) and j](E) are the 
emission coefficients for secondary electrons [e.g., 
Sternglass, 1954a; Sanders and Inouye, 1978] and back- 
scattered electrons [e.g., Sternglass, 1954b; Prokopenko 
and Laframboise, 1980], and e the elementary charge. The 
index n (= 1,2) labels the Maxwellian. The extension to 
higher-component plasmas would be done by simply 
including more terms. The exponentials are due to repul- 
sion of electrons by the negative potential (Boltzmann 
factors) and the square bracketed ion term represents the 
attraction of positive ions in the orbit-limited regime of 
Mott-Smith and Langmuir [1926], which is a good ap- 
proximation at geosynchronous altitudes. No approxima- 
tion of ion mass or temperature relative to those of 
electrons has been assumed in these terms. In these 
expressions it is assumed that 0 < 0. In the regime 0 > 
0, the surface would be electron attracting and ion repel- 
ling and the net current would rapidly go to negative 
values. 

[27] The symbols in equations (21) and (22) are related to 
those in equations (20a) and (20b) as follows: 

Je.n(4>) = -y,.„(0)[l  -(* + '/}]exp 

An(0) =A»(0) I        fr'ft 
kT, 

1,2   (24) 

(25) 

We ignore the ions for 0 near 0, because je_„(0) 2> y,.„(0) 
(n = 1, 2). The flux inequality is usually valid because of 
the difference in electron and ion masses. We further 
assume thatyc.j(0) >yc,2(0), in order to illustrate the triple 
root case. The sign convention in equations (20)-(23) is 
that the incoming electron flux is negative. 

[28] The admissible values for the spacecraft potentials 
are given by the zeros (roots) of the total flux (i.e., given by 
the current balance equation at steady state) 

M4>) = 0. (26) 

Let us now examine the nature of the function Jj{<j)) by 
varying 0. At 0 = 0, Jj{0 = 0) is dominated by the 
contribution from the electron term of the first Maxwellian 
distribution 

•/2(0) = -y*.2(O)[l-(« + ?/>]exp 
kT, 

+ju(0) 
<1iO 

k~T~i 
(22) 

•MO) *-./,.i«»[i-<« + !/)]. (27) 

Since T\ < T* (equation (15)), there are more outgoing 
electrons than incoming ones, thereby rendering (6 + rj) 
greater than unity and therefore ^(0) is positive. This 
situation is depicted in Figure 3 (top). 
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Figure 3. A (top) triple-root situation and (bottom) triple- 
root jump in spacecraft potential o for a double-Maxwellian 
distribution of electrons in space. The roots are at the zeros 
of the total flux. The JA<t>) curve for 0 > 0 follows a 
different equation for electron attraction and ion repulsion. 

[24] As the magnitude of 0 (<0) increases, the exponen- 
tials in equations (21) and (22) become increasingly influ- 
ential. Since T\ < T2, the exponential in equation (21) 
decreases faster than that in equation (22) and Jj{4> < 0) 
decreases. Eventually, at sufficiently large magnitude of 0 
(<0), Jj(0 < 0) is dominated by the contribution from the 
electron term of the second Maxwellian distribution. Since 
T2 > T*, the (fi + TJ) term in equation (27) is less than unity, 
rendering Jj{0 < 0) negative (Figure 3 (top)). 

JT(0 < 0) = -/,.2(0)[l - (6+ n)]fixp(-^-\ (28) 

As the magnitude of 0 (<0) increases further, eventually 
the ion terms in equations (21) and (22) will become 
increasingly important. This is because more and more 
positive ions are attracted by the increasingly negative 
potential (j«0). This results in the total fluxes J-j{<t> < 0) 
rising to positive values (Figure 3) and subsequently. 

[30] As the environment parameters change in time, the 
flux-voltage curve adjusts accordingly. If the net flux 
decreases or increases through zero, a pair of neighboring 
roots can sometimes coalesce and disappear. If this happens, 
a jump in spacecraft potential to the remaining root would 
occur (Figure 3 (bottom)). In a general plasma, there may be 
more than three roots. The even roots are stable and the odd 
roots are unstable [Lai, 1991a]. If the dynamic plasma 
changes such that two roots coalesce, the jump is between 
two remaining stable roots. 

[31] The prerequisites for a triple root jump are: a 
positive flux near the origin (0 < but «0), with a decrease 
to negative flux at middle potentials 0{<O), followed by 
the rise to positive flux in the limit (0 < 0). If the positive 
flux at low potentials c>(<0) goes negative or the negative 
flux at the middle potentials goes positive, two of the roots 

can disappear and a jump to the remaining stable root 
triggered. 

6.    Double-Maxwellian Distribution With 
a Low-Temperature Component 

[32] Now let us look at spacecraft charging when there 
is a double-Maxwellian plasma with a component that 
has temperature less than the anticritical level. For 
brevity, we label the electron terms by their uncharged 
strength y„ = |JC,„(0)| where /; = 1,2 corresponding to 
the nth temperature. 

6.1.   Case 1 

[33] Consider a double-Maxwellian distribution in which 
the two temperatures 7"0 and T, satisfy the following 
inequality: 

r0 < TA < 7"i < 7"*. (29) 

We initially assume that at d> = 0, the dominant contribution 
is fromy0, whose temperature T0 satisfies equation (29), and 
therefore Jj{0) is negative. As the magnitude of c'>(<0) 
increases, the exponential term multiplying j0 decreases 
faster than that multiplying y',. Eventually, the second 
distribution (T = T|) gains the upper hand. The second 
distribution has TA < 7", < T* (equation (29)) and therefore 
Jj{0 < 0) can be pushed from negative to positive. As the 
magnitude of 0(<O) increases further, eventually the 
incoming ion flux will win because a high negative voltage 
attracts abundant positive ions. Therefore, Jj{0 <K 0) goes 
more positive. We conclude that the situation of equation 
(29) does not feature a triple root. There is only a single 
negative root, which arises when they'() term pushes the net 
flux down to negative values. This situation is illustrated in 
Figure 4f. If they'o term is not strong enough to drive the net 
flux to negative values, the root would form at positive 
potential. If they'i term is negligible, the flux curve would 
match the ion line until they0 term comes in. On the other 
hand, if at 0 - 0, the dominant contribution is fromy'i, then 
the current is initially positive and stays positive. There is 
again no triple root situation and a single root would form at 
positive potentials. 

[34] Consider now the case where the ambient plasma 
changes such that they'i flux increases. The net flux is lifted 
higher and any existing negative root would move toward 
the origin (less negative). 

6.2.   Case 2 

[35] Consider a double-Maxwellian distribution in which 
the two temperatures 7"() and 7\ satisfy the following 
inequality: 

r0 <TA <T* < T2. (30) 

We initially assume the first Maxwellian distribution be 
more abundant. At 0 = 0, the dominant contribution is from 
jo, whose temperature T0 satisfies equation (30) and 
therefore Jj{0) is negative. As the magnitude of c*>(<0) 
increases, the first exponential (equation (21)) loses its 
influence compared with that of the second (equation (22)). 
Eventually, the second Maxwellian gains the upper hand. 
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Figure 4. (a) Current-voltage behavior in a single-Maxwellian plasma. The inputs are listed in Table 4 
(case a), (b) Current-voltage behavior in a single-Maxwellian plasma. The inputs are listed in 
Table 4 (case b). (c) Current-voltage behavior in a single-Maxwellian plasma. The inputs are listed 
in Table 4 (case c). (d-g) Current-voltage behavior in double- or triple-Maxwellian plasma. The 
inputs are listed in Table 4 (cases d-g). 
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Figure 4.   (continued) 

However, the second Maxwellian distribution (T2 > T*) also 
favors negative flux. Therefore, both Maxwellian distribu- 
tions behave in the same way: bothy',) and j2 give negative 
flux and there is no competition between the distributions. 
As 0 (<0) increases further, the incoming ion flux 
dominates because high negative voltages attract positive 
ions. We conclude that in this case there is no triple-root 
situation. There is only a single negative root, arising when 
the term j0 plus the term j2 push the net flux to negative 
values. The characteristic curve is shown in Figure 4e. If 
these combined terms are not strong enough to drive the net 
flux to negative values, the root would form at positive 
potential. 

[36] If j2 increases, as the plasma evolves, the net flux 
decreases. A root at negative potential would move toward 
more negative potentials. lfj2 is strong enough to produce a 
negative root without ay0 contribution, the root can move to 
high negative potentials. This is the normal case for charg- 
ing above the critical temperature (Figure 4a). 

7.    Triple-Maxwellian Distribution With a 
Low-Temperature Component 

[37] Consider a triple-Maxwellian distribution in which 
the three temperatures satisfy the following inequality: 

The equation (19) is now generalized to 

JT((p) = Ja(<t>) + J)(0) + J2(o). (32) 

rn < T4 < r, < T* < T2 (31) 

where the terms have the forms given in equations (21) 
(23). As in section 6, we assume that each of the electron 
fluxes is about 2 orders of magnitude higher than the 
corresponding ion fluxes. Let us assume further that the first 
Maxwellian electron fluxy',.,,^) is stronger than the second 
and third electron fluxes. Accordingly, at 0 = 0, the total 
flux Jj(0) is negative, and a representative point. A, is 
shown in Figure 5. 

[3s] As (p{<0) increases in magnitude, the low- 
temperatures 7^,0 'n me denominator of the exponential 
reduces the low-energy flux y'«..o(0) faster than the middle 
energy flux jej(d>). Eventually, je,\((t>) exceeds /(,,)(0) and 
can dominate. Since the temperature T,,t ofj,,j(0) is below 
the critical temperature 7*, the contribution is positive. In 
other words, the total flux Jj{(p) can be driven positive. A 
representative point B is shown in Figure 5. 

[39] As 0(<O) increases further in magnitude, the expo- 
nential of J\(<(>) in equation (32) will diminish faster than 
that of J2(4>) in equation (32) because Te\ < T,,2. When 
•/2(0) dominates, charging to negative voltages will occur 
because T2 exceeds the critical temperature T*. As a result, 
the total flux, Jr(<t>), can go negative. A representative point 
C is shown in Figure 5. 

[40] As 0(<O) increases even further in magnitude, even- 
tually the increasing highly negative potential 0 will attract 
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Figure 5. A triple-root situation for a triple-Maxwellian 
distribution of electrons in space. As the space environment 
changes, the distributions change. Suppose the spacecraft 
surface potential is at the first root 0() on the right (near 0) 
initially. Let the point near B change in such a way that it 
sinks as time evolves. When it sinks below Jj{<j>) = 0, the 
first two roots d>0 and </>, coalesce and disappear together, 
leaving only the third root <J>2 at the far left (high § < 0). The 
spacecraft potential would jump to the third root <t>2. 

so many incoming ions that the ion flux will dominate over 
the fluxes of electrons. When the incoming ion flux dom- 
inates, the total flux Jj{0) will be positive. Further increases 
in the magnitude of 0 (<0) will not alter the dominance of 
the ions. A representative point D is shown in Figure 5. 

[41] The curve in Figure 5 illustrates a possible initial 
flux-voltage characteristic compatible with the plasma tem- 
perature condition (equation (31)). As the plasma evolves in 
time, the fluxy 1 could decrease orj2 could increase, causing 
the positive bump in the flux-voltage curve (at point B) to 
drop down to negative current. If the surface was originally 
lying at the root between B and A, it would jump to the high 
negative root between points C and D. 

[42] In Figure 6 we show a case where the jt/j2 ratio is low 
enough to lower the net flux near the origin to slightly 
negative values. It is evident that no triple root is possible, 
but that one could occur if there was noy0 component pulling 
down the curve at the origin (so the plot looks like Figure 3 
(top)). It is in special cases like this one that the T0 term makes 
a difference in the possible appearance of triple roots. 

[43] This discussion illustrates that, depending on the 
relative magnitudes of the fluxes, a triple root situation 
can develop when the plasma temperatures span the critical 
and anticritical temperatures. The anticritical component 
produces a negative down turn in the flux-voltage charac- 
teristic curve, near the origin. It only slightly modifies the 
triple root situation relative to the double Maxwellian case 
and the formation of triple roots still depends primarily on 
the relative strengths of the j\ and j2 fluxes. A more 
quantitative numerical treatment of the threshold for the 
triple root situations is described in Appendix A. 

8.    Anticritical Temperature and Low-Voltage 
Charging 

[44] In this section we describe the possible shape of a 
low-voltage surface charging curve plotted against the 

average electron temperature. We will assume that the 
spacecraft is differentially charged and that there is a cloud 
of low-energy electrons present. The electron cloud could 
form because of secondary electrons trapped locally or 
because of returning photoelectrons in sunlight. The mech- 
anisms of low-energy electron cloud formation are outside 
the scope of this paper. 

[45] We consider a plasma distribution with three possible 
Maxwellian components, with relative flux strengths Jn, J\, 
J2. The charging is discussed with respect to the average 
electron temperature. Let the overall plasma temperature T 
be given by the flux-weighted expression. 

T = 
70 7b +j\T\ +J2T2 

jo +j\ +J2 
(33) 

Let us look first, at the lowest average temperature region. 
The flux is dominated by electrons with temperature in the 
anticritical region. The potential is set mainly by a balance 
between the low-temperature electrons with strength J0 and 
the ions. This situation is described in Figure 4e, with 
negligible J\ contribution. The electrons add a negative 
contribution near the origin and if the strength Jn is 
sufficient to turn the net flux into negative values, there will 
be a root formed. If the electron flux is not strong enough, 
the flux will be positive at the origin, and the root will form 
at positive voltage. Let us now consider the case where the 
average electron temperature is above the anticritical 
temperature, but below the critical temperature. We can 
represent this situation by adding a substantial positive 
contribution of strength J\ from a Maxwellian term with 
temperature above anticritical. The effect of this term is to 
bump the J^in curve up until it reaches the point at which the 
low-energy electrons come in and again produce a drop to 
negative flux near the origin (see Figure 4f). We note that a 
rising bump due to J{ would cause the root to move slightly 
toward the origin. Consider now the case with the average 
electron temperature well above the critical temperature. A 
dominant electron flux of strength J2 would pull the net flux 
curve to negative values. If there is any small low-energy •/,> 
contribution still present, it would have a little effect on the 
root. The transition from the situation of Figure 4f to the 
present case (of rising electron temperature resulting in J2 

dominating), is shown in Figure 6. For the purpose of 
illustrating the transition from Figure 6 (top) to Figure 6 
(bottom), we have highlighted the JNF.T curve. There would 
be an approximately linear rise in the charging potential 
above the critical temperature as can be predicted from a 
simple single Maxwellian model [Lai and Tautz, 2006]. 

[46] The case where the average electron temperature is 
approximately equal to the critical temperature can be quite 
complex. In this region one expects to get both Jt and J2 

contributions and the result is sensitive to the ratio J\IJ2. If 
J, is stronger than J2, a triple root situation can occur, as 
depicted in Figure 5. If y, is weaker than J2 one can obtain 
the curve shown in Figure 6 (bottom), where the J| term is 
not strong enough to push the net flux to positive values and 
a single root forms. In this complex case, the threshold for 
the triple root formation depends on the temperatures as 
well as the ratio Jt/J2 and is not very sensitive toy'0. In the 
limit T\ —• T2 — T*, the high-temperature electron fluxes 
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Figure 6.   Transition from (top) a triple-root situation to (bottom) a single-root situation. The inputs are 
kTn = 0.11, kT2 = 0.3, and AT3 = 0.1 keV. The density inputs are n0 =4, ti\ m 0.4 (in Figure 6 (top)), «| = 
0.2 (in Figure 6 (bottom)), and n2 -0.1 cm 
to electron current is taken as 0.01. 

The ion temperature AT, = 1 keVand the ratio of ion current 

tend to cancel and one reverts to the previous low-energy 
case (Figure 4a). 

[47] For comparison, we have grouped together the com- 
plete set of seven different cases of current-voltage behav- 
iors in Figures 4a 4g. The equations used are equations 
(28) and (29) or their respective simplifications for double 
and single Maxwellian cases. The density and temperature 
inputs are listed in Table 4. 

[4x] We remark that near 7"*, the current-voltage curve 
tends to be nearly flat. A slight "pulling up" and a "push 
down" near the zero crossing may make a triple root 
situation to appear. For a triple root, we need a positive 
flux ,/| at 7": < r* in comparison with a negative flux J2 at 
T2> f,. One can write T\ = T* A, and T2 = T* + A2. 
Since A, and A2 do not have to be equal or small, it is 
difficult to make a general statement on the triple root 
location. Suppose a triple root situation forms as a result. 

The corresponding signed fluxes Jt) and J2 are negative 
because of our temperature assumptions. The fluxyn can be 
smaller than /1 andy'2. because its velocity is much slower 
than the others. In the average temperature 7", the flux /0 ~ 0 
in equation (33), so that 

T _j\T\ +J2T2 
j\ +/2 

If71 «72, equation (34) becomes 

T=l-(Tl + T2), 

(34) 

(35) 

and assuming A| « A2 or small with respect to T*, then 
equation (35) becomes 7"« T*. 

[49]   In Figure 7 we show empirical data for the negative 
of the measured spacecraft potential versus average electron 
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Table 4.  Electron Density Input in Case Studies" 

('ase "0 «i Hi 

a 0.0 0.0 0.1 
b 0.0 0.1 ().() 
c Id 0.0 0.0 
d 0.0 0.3 0.1 
e 4.0 0.0 0.1 
f 4.0 0.2 0.0 

£ 4.0 0.275 0.1 

"Input densities «o,«i. and n2 (cm'"') for three Maxwcllian distributions with 
temperatures Ta < TA < 7"i < T* < T2, respectively. For the calculations in 
Figures 4a -4g, wc have used kT„ = 0.011 kcV, kTA ^ 0.014 kcV, kT, = 0.3 kcV, 
kT* = 0.5 kcV. and kT2 = 0.9 kcVs. The kapton values of TA, T*. secondary 
electron coefficient, and backscattcrcd electron coefficient arc used. 

temperature of the ambient plasma, obtained on a Los 
Alamos National Laboratory (LANL) satellite under eclipse 
conditions [Thomsen et ai, 1999]. We have provided above 
a qualitative physical interpretation to the data. Only two 
electron distributions plus ions are needed to describe the 
main features of Figure 7. At low average temperatures, low 
negative charging can occur. As the average temperature 
rises above the anticritical level (here estimated at ~ 10 eV), 
positive flux comes in and lifts the net flux curve, shifting 
negative roots to smaller values. This shift to smaller 
negative charging voltages is seen statistically in Figure 7. 
As the average temperature goes above the critical temper- 
ature (~300 eV), the negative flux begins to dominate and a 
linear response to high (negative) potentials is seen. Triple 
root configurations can occur when the average temperature 
is near the critical temperature and the high (negative) 
potentials seen in Figure 7 at about 300 eV have the 
signature of triple root jumps. 

9.    Conclusion 

[so]   For many surface materials an anticritical tempera- 
ture exists along with the well-known critical temperature 

for onset of negative charging. The anticritical temperature 
allows low-voltage negative charging to occur below it and 
suppresses the charging above it. These two temperatures 
occur because of the characteristic shapes of the secondary 
and backscatter yield curves and the theory for each is 
similar (current balance). While the critical temperatures for 
materials charging are of the order of a kilovolt, the 
anticritical temperatures, if they exist, are typically less than 
a few hundred volts. There is a large uncertainty in the 
anticritical temperature due to the unknown behavior of the 
electron backscatter as the incident energy goes to zero. 
Reliable values of anticritical temperature await the devel- 
opment of more accurate electron backscatter measure- 
ments. In theory, a low-energy enhancement in the 
backscatter yield moves the anticritical temperature to 
smaller values and it vanishes if the backscatter is too 
strong. Due to the low energies involved, approximate 
values of the anticritical temperature can be obtained by 
Taylor expansions, but these are also subject to the same 
backscatter uncertainties. We have looked systematically at 
low-energy charging with a double and triple Maxwellian 
plasma. The low-energy charging versus electron tempera- 
ture is described qualitatively and is in approximate agree- 
ment with a sample of LANL measured data. Triple root 
situations are also discussed and a rough signature is given; 
anomalous charging occurs just below the critical temper- 
ature. Charging points having this approximate triple root 
signature are also seen in the sample data. 

Appendix A: 
Formation 

Thresholds for Triple-Root 

[51]   We consider a triple Maxwellian plasma with tem- 
peratures T0, 7"|, and T2 which satisfy 

T„ < TA < T, < T' < T2, 

1994-084   January 1997 
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1000 10000 

Figure 7. LANL spacecraft charging versus average electron temperature. The data is for eclipse. A 
rough estimate of the anticritical temperature kTA is 10 eV, and a rough estimate of the critical temperature 
kT* is 300 eV. (Courtesy of M. F. Thomsen.) 
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where TA and T* are the anticritical and critical temperatures 
for charging. We can write the total incoming flux, in the 
orbit-limited regime, as 

JT{4>) =y0exp <h0\ 
AT, 

qe<t> 
AT, 

(Al) 

where qe is the electron charge, </, the ion charge, and 0 < 0 
the surface potential. The positive ion flux J, given in the 
last term of equation (Al) is typically much smaller than the 
electron fluxes, at low charging potentials, and we shall 
neglect it in the (necessary) threshold condition. The JN 

(N = 0, 1, 2) are the signed electron fluxes at zero 
potential. In terms of the variables in the main text, we 
have 

A' = -y,.,v(0)(i -<« + !»», 

where t< and 7/ are the corresponding secondary and 
backscatter coefficients. According to our temperature 
assumption, the signs of Jn and J2 are negative and that 
of J, is positive. As in the text, we can introduce the 
absolute flux strengths y'N = \JN\. We can then write 
equation (Al) as 

M To exp 
kTn 

+ 7i exp 
<1eO 

AT, 
-72 exp 

(A2) 

In equation (A2), the electron potential energy qe4> is 
positive for negative charging voltages. The signs of the 
terms are given explicitly. We could normalize to the 
central region flux, making j\ = 1, since this term must 
always be present for triple root formation. If there is no 

y'o flux present, a necessary condition for a triple root 
situation is simply that the flux be positive at the origin 
(<6 = 0) so that the strengths satisfy j\ > j2 [see Lai, 
1991a]. If there is a j0 component, this threshold 
condition will be modified, as is discussed below. 

[52] A necessary condition for a triple root situation to 
occur is that the net flux-voltage characteristic goes positive 
near the origin and then sink to negative values at larger 
qe4>. If the ions are neglected, this condition can be satisfied 
if the electron curve has a maximum at some point qe4>x and 
a minimum at qe62 > qe<!>\. We can write these extrema 
conditions as 

\      7o        /   qA\ 
kT0 

+ -£exp 

kTQ 

kTj 

7i 
PFexP 

</yz>i 
AT, 

(A3) 

</V V 
•ll 7o 

' kT„ 

h_ 
AT, 

exp 

exp 

' kT0 

qe<?i 

AT: 

7i 
Ar, 

= 0. 

exp q,-Q: 

' kT, 

(A4) 

For the purposes of numerical analysis, we can regard these 
conditions as two equations in the unknowns f0 = jjj\ and 
fi ~JiO\< w'tn 7*o, 7"|, 7%, qe<p\, qe(i>2 as fixed parameters. A 
simple matrix inversion then yields the solutions 

_L(A/1-i (exp(-q,0l/kT\ ) 
\e\p(-qr<t)2/kT\) A/', 

(A5) 

where (A/) is the 2 x 2 matrix 

/   I 

(M) 
krn m wA-%) 

\kTa 
exp 

<teO\ 

kT0 

' kTn 

A 7: J_ 
AT 

exp q,Q2 

kT, 

(A6) 

/ 

This procedure yields the variables^) and /i as functions of 
the temperatures and potential energies. If jt is known, then 
by substitution in equation (A2) we further obtain j(0\) and 

j(4>2)- To illustrate the numerics, we assume nominal 
temperatures (keV) for the regions: kTn = 0.011. kT\ • 0.3, 
and kT2 = 1.0. We have calculated the difference q,J4> = 
qe<t>2 - <ie<S>\ w'thy(0i) held at zero. This gives the d<t> 
dependence at the (necessary) threshold. The calculation 
indicates that dp is approximately a constant at the 
threshold. Its value depends on the chosen temperatures. 

[53] In order to better understand the onset of triple root 
formation, we examine the approximate behavior at the 
threshold condition. 

(A7) 

If qcc>\ S> AT0 we can neglect the first term in (A.7) and find 

,/2=exP(-gi), (A8, 

where we have defined the temperature variable T2\ > 0 as 

7% 7", 

(7*2-7-,)' 
(A9) 

Now let us look for another approximate expression for f2. 
From the matrix solution, we have 

/2=T77expl"^rJ+T7T 
</(.0,\     Mu 1eQ2\ 

kTt } 
(A10) 

If q,,<p\ » kT(), we can again neglect the first term. We are 
left with 

Combining equation (All) with equation (A8) we get 

qed<t> = qed>2 -<7e<2>i = AT21 log(^r I (A12) 
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kT0-0.11, kT,»0.3, kT,»l.0keV 

•      \ 
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= 10 • 

h   " 100^ 

00 1 0 20 

variable d<j> as a function ofj2, over three decades ofy„ (in 
this plot we assume j\ = 1). There is very little jQ depen- 
dence. At the threshold (d<j> = 0.52) it is evident thaty2 is 
slightly less than one. Lower values of j2 are above 
threshold and higher values are below it. Figure Al indi- 
cates a rough signature for triple root charging: there should 
be a positive flux contribution from below the critical 
temperature and a weaker negative (here j2 < 1) flux from 
above the critical temperature. On a plot of spacecraft 
charging versus the average electron temperature, the triple 
root potentials would appear as uncharacteristic high (neg- 
ative) potentials occurring below the critical temperature. 

[56] The threshold relation investigated in this appendix 
is a necessary condition. To obtain both necessary and 
sufficient conditions one must include the ions. Thus, to 
get a triple root situation, we would have 

j(qe<t>\) + Ji{qi<>\) > 0 (A16a) 

Figure Al.   Estimated A</> = 4>2 — 4>\ versus j2, withy',, as 
fixed parameter, for nominal temperatures. 

This expression corresponds to the numerical result of 
constant qedcj). 

[54] In a physical case, we are more likely to know the 
fluxes jotju}i than the positions of the extrema 4>\ and <p2. 
Using equations (A3) or (A4), approximate expressions for 
0i and 02 can De obtained in terms of temperatures and 
fluxes. An approximation for <j>\, is found by putting the 
exponential in the last term of equation (A3) equal to one, 
which yields 

<7<.</>i = *7ni log m-m (A13) 

where 7"0i < 0 is defined in the same way as in equation 
(A9). We can get an approximate expression for 02, by 
neglecting the first term in equation (A4), which gives 

qect>2 = kT2\ log 
hT: 

(A14) 

In these approximations, the log argument and qe<t>\, qe4>2 

are positive, leading to restrictions on the flux strengths (/0/ 
To +j2/T2 <j\IT\ j2lj\ < T2IT\). When a representative set of 
parameters T(), T\, T2 and jn, j\, j2 are known, equations 
(A13) and (A14) can be used to estimate </>,, 4>2 and if the 
condition 

qe(j>2 - qe0] > kT2\ log: (A15) 

holds, then, to the level of approximation considered, 
the system is above the threshold. If we again let the 
temperatures have the nominal values given above, the 
value of the right hand side of equation (A 15) is found to 
be 0.52. 

[55]   Using the approximate formulae (equations (A 13) 
(A 15)) we can estimate the threshold behavior directly as a 
function of the flux strengths. In Figure A1, we show the 

j(qe02) + J,{q,<h) <0. (A 16b) 

If J, ~ 0, we get back from equation (A16a) the condition 
discussed above and equation (A 16b) is satisfied identically 
since j(4>2) < 0 when the j2 term is dominant. At zero 
potentials the ion fluxes are typically 2 orders of magnitude 
smaller than the electron fluxes, because of the smaller 
electron mass, and the approximation ./, = 0 is a good one. 
We are here assuming that we are below the asymptotic 
limit 0 —> x), wherey(0) —> 0 and the flux is dominated by 
the positive ions. A net flux voltage curve, including the 
ions, is depicted in Figure 5. In Figure 5, point B is shown 
as the positive maximum at <f>\ and point C is the negative 
minimum at <j>2. 

[57]   The above analysis could be carried out with plasma 
densities nN instead of fluxes, using the connecting relation 

(AI7) JN = cnN\JTN(c(TN) + ij(Tfj) - 1), 

where c is a constant. In order to compute the secondary and 
backscatter coefficients, the material properties are needed. 
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